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A B S T R A C T

Attentional selection shapes human perception, enhancing relevant information, according to behavioral goals.
While many studies have investigated individual neural signatures of attention, here we used multivariate
decoding of electrophysiological brain responses (MEG/EEG) to track and compare multiple component processes
of selective attention. Auditory cues instructed participants to select a particular visual target, embedded within a
subsequent stream of displays. Combining single and multi-item displays with different types of distractors
allowed multiple aspects of information content to be decoded, distinguishing distinct components of attention, as
the selection process evolved. Although the task required comparison of items to an attentional “template” held in
memory, signals consistent with such a template were largely undetectable throughout the preparatory period but
re-emerged after presentation of a non-target choice display. Choice displays evoked strong neural representation
of multiple target features, evolving over different timescales. We quantified five distinct processing operations
with different time-courses. First, visual properties of the stimulus were strongly represented. Second, the
candidate target was rapidly identified and localized in multi-item displays, providing the earliest evidence of
modulation by behavioral relevance. Third, the identity of the target continued to be enhanced, relative to dis-
tractors. Fourth, only later was the behavioral significance of the target explicitly represented in single-item
displays. Finally, if the target was not identified and search was to be resumed, then an attentional template
was weakly reactivated. The observation that an item's behavioral relevance directs attention in multi-item dis-
plays prior to explicit representation of target/non-target status in single-item displays is consistent with two-
stage models of attention.
1. Introduction

Our perception of the world is constantly shaped by attentional se-
lection, enhancing relevant over irrelevant information, to achieve our
behavioral goals. Effective selection begins from a flexible description,
often called the attentional template, of the object currently required
(Duncan and Humphreys, 1989; Bundesen, 1990). Much evidence sug-
gests that attentional selection is then achieved through a process of
biased, integrated competition across a broad sensorimotor network
(Duncan et al., 1997). As objects in the visual input compete to dominate
neural activity, the degree to which they match the attentional template
determines their competitive advantage (Desimone and Duncan, 1995;
Beck and Kastner, 2009).

Attention is often characterized as an emergent property of numerous
neural mechanisms (Desimone and Duncan, 1995; Hopf et al., 2005),
with different mechanisms dominating as successive stages of selection
(Eimer, 2015). Therefore, while many studies have investigated the
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time-course of individual neural signatures of attention in humans and
animal models, it is informative to compare multiple components of the
selection process within the same paradigm. Recently, there has been
much interest in the use of MEG/EEG for real-time decoding of cognitive
representations in the human brain (Stokes et al., 2015). Here, we used
simultaneous MEG/EEG to examine the time-course and content of
different components of attentional selection. We combined single-item
and multi-item search displays with different types of distractors to
allow multiple aspects of information content to be decoded from the
neural signal, distinguishing distinct components of attention as the se-
lection process evolved.

The behavioral relevance of stimuli was manipulated by starting each
trial with one of two auditory cues, indicating the relevant visual target
object on this trial. Participants were then presented with a series of vi-
sual displays of 4 possible types: a 1-item display of the target (T), an
inconsistent non-target (Ni; which was associated with the other cue and
served as a target for other trials), a consistent non-target (Nc; which was
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never a target), or a 3-item display with all items presented simulta-
neously (see Fig. 1 for an illustration). The use of inconsistent non-targets
allowed representation of target status to be distinguished from repre-
sentation of stimulus identity. The inclusion of 3-item displays allowed
competitive representation of target location and target identity to be
quantified under matched visual input. The use of consistent non-targets
amongst a stream of choice displays allowed decoding of attentional
template reactivation in preparation for a subsequent display. Partici-
pants made a button press whenever they detected a rare brightening of
the target item. Requiring responses only for conjunctions of identity and
brightening allowed response trials to be excluded from the analysis and
attentional selection assessed on trials without an overt response. Using
multivariate decoding analyses, we asked which component processes of
attentional selection are visible in the MEG/EEG signal over time.

First, we examined representation of the attentional template. One
possibility is that, when a cue indicates the relevant target object, some
sustained signal will be set up in neurons selectively responsive to that
object (Chelazzi et al., 1993; Puri et al., 2009; Kok et al., 2013). fMRI
decoding studies have shown cross-generalization between attentional
templates and sensory responses to the corresponding objects (e.g.,
Stokes et al., 2009; Peelen and Kastner, 2011), supporting a tonic acti-
vation of visual representations. However, corresponding results tend to
be weak or non-existent in electrophysiological recordings (Stokes et al.,
2013; Myers et al., 2015; Wolff et al., 2015), and where they have been
found, they may appear only very briefly prior to the target stimulus
(Myers et al., 2015; Kok et al., 2017). Indirect measures of attentional
templates, derived from ERP components, demonstrate that search
templates are not continuously active but are transiently activated in
preparation for each new search episode (Grubert and Eimer, 2018).
Recently, it has been proposed that template storage may sometimes be
“silent”, perhaps encoded in changed synaptic weights rather than sus-
tained firing (Stokes, 2015). To examine template coding, holding visual
input constant, we analyzed data from the period between cue and
Fig. 1. Stimuli and experimental paradigm. (A) The 3 objects used in the experimen
objects. This results in two items that serve as targets (T) for one cue, and non-targets
The pairings between the tones and the objects were counterbalanced across par
beginning of each trial, an auditory cue indicated the target for that trial. After a dela
immediate button press if a brightening of the target stimulus was detected.

397
displays, and during subsequent presentation of Nc stimuli.
Second, we were interested in the process of target selection itself.

Comparing target and non-target stimuli shows strong differences both
behaviorally and neurally (Duncan, 1980; Hebart et al., 2018). Attending
to a relevant visual object produces strong, sustained activity across
many brain regions (Desimone and Duncan, 1995; Sergent et al., 2005;
Dehaene and Changeux, 2011), reflecting encoding of its multiple visual
properties and implications for behavior (Wutz et al., 2018). In the
presence of multiple stimuli, neural responses are initially divided
amongst the competing sensory inputs and later become replaced by a
wide-spread processing of the behaviorally critical target (Duncan et al.,
1997; Kadohisa et al., 2013). On 1-item trials, we focused on the response
to the T and Ni stimuli, to quantify the representation of object identity
(e.g., face vs. house) regardless of status as target or non-target, as well as
representation of behavioral category (T vs. Ni) regardless of object
identity. On 3-item trials, we quantified the encoding of target location
and target identity, to assess preferential processing of target features
when multiple items compete for representation.

2. Methods

2.1. Participants

Eighteen participants (9 males, 9 females; age range: 18–30 years,
mean¼ 24.4, SD¼ 3.8) took part in the study, recruited from the
volunteer panel of the MRC Cognition and Brain Sciences Unit. Two
additional participants were excluded from the analysis due to technical
problems (one could not do the MRI; another was excluded due to an
error in digitizing the EEG electrodes). EEG data for 4 participants were
excluded from the MVPA analysis due to a technical issue (a test signal
used during hardware checkup was not removed). All participants were
neurologically healthy, right-handed, with normal hearing and normal or
corrected-to-normal vision. Procedures were carried out in accordance
t. (B) An example of how the two auditory tones could be paired with the three
(Ni) for the other cue, and the third item serving as a consistent non-target (Nc).
ticipants. (C) An example trial illustrating the experimental paradigm. At the
y, this was followed by three visual displays. Participants were asked to make an
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with ethical approval obtained from the Cambridge Psychology Research
Ethics Committee, and participants provided written, informed consent
prior to the experiment.

2.2. Stimuli and procedures

Participants performed two localizer tasks (auditory and visual) and
an attention task (see Fig. 1 for an illustration). Stimulus presentation
was controlled using the Psychophysics Toolbox (Brainard, 1997) in
Matlab 2014a (Mathworks, Natick, WA). Auditory stimuli were delivered
through in-ear headphones compatible with the MEG recording. Visual
stimuli were back-projected onto a screen placed in front of the partici-
pant, approximately 129 cm from the participant's eyes. Each stimulus
image was approximately 20 cm wide (approximate visual angle 8.8�) on
a grey background. Before the start of each task, participants were given
training to familiarize them with the stimuli and task rules. If a false
alarm was made during any of the trials during the recording, that trial
was repeated at the end of the run.

2.2.1. Pattern localizer tasks
Auditory Localizer Task: This task was used to characterize multi-

variate activity patterns for high and low pitch tones used in the attention
task. Participants heard a stream of intermixed high (1100Hz) and low
(220Hz) pitch tones. On rare occasions (9% of the time), a frequency
modulation would occur (modulator frequency¼ 20Hz; modulation
index¼ 2.5), and participants were instructed to press a button whenever
they detected a distortion in a tone. There were 100 occurrences of each
unmodulated tone and 10 occurrences of each modulated tone. The
duration of each tone was 100ms, with the beginning and ending 10ms
ramped. The inter-stimulus interval was jittered between 1000 and
1500ms.

Visual Localizer Task: Similar to the auditory localizer task, this task
was used to establish multivariate activity patterns for three visual
stimuli (a face, a house, and a violin) used in the attention task. Partic-
ipants were shown a stream of these images presented sequentially in the
center of the screen for 100ms each, with an inter-stimulus interval jit-
tered between 1500 and 2000ms. Most image displays were semi-
transparent (60% opaque) on a grey background; participants were
asked to make a button press whenever they detected a brighter and
higher contrast version of the image (100% opaque). There were 100
occurrences of each translucent image and 10 occurrences of each
brightened image.

2.2.2. Attention task
Fig. 1 illustrates the stimuli used in the task, as well as the task

structure. Before the start of this task, participants were trained to
associate the two auditory tones with two of the three visual stimuli (the
same used in the localizer tasks). This pairing resulted in the visual
stimuli being categorized by behavioral relevance as targets (T: the visual
stimulus paired with the current cue), inconsistent non-targets (Ni: the
visual stimulus paired with the alternative cue), and consistent non-
targets (Nc: never targets). All six possible mappings of two cues to
three objects were counterbalanced across participants. The task was
executed in runs of 90 trials. Each trial began with an auditory cue (for
100ms), followed by a 1750–2250ms fixation cross during which par-
ticipants were instructed to prepare to attend for the target stimulus.
Then a stream of three visual displays appeared one by one for 100ms
each, separated by 1500–2000ms inter-stimulus intervals. Each display
could be a 1-item display or a 3-item display with equal probability
(order pseudorandomized, with the constraint that a 1-item display could
not follow a 1-item display of the same type to minimize sensory adap-
tation effects). On 1-item displays, the stimulus was centered at fixation;
3-item displays contained all three visual stimuli, with the center of each
stimulus 10� visual angle from fixation, arranged in an equilateral tri-
angle with one above left, one above right, and one below. In 18 out of
the 90 trials in each run, a single brightened stimulus, target or non-
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target, occurred pseudo-randomly in one of the 3 displays, with equal
likelihood of appearing in each. For each cue type, brightenings affected
T, Ni and Nc items once each on single item-trials, and twice each on 3-
item displays, allowing one brightening for each of the six possible 3-item
stimulus configurations. Participants were asked to attend to targets,
pressing a button if they detected a brightened target (they could respond
any time before the next stimulus), with no response for all other dis-
plays. Events with a brightened stimulus and/or button presses were later
removed in the analysis, such that the results were not influenced by
these events. The trial terminated if a button press was made, and par-
ticipants were informed whether the response was a correct detection or
a false alarm. A new trial began when the participant indicated with a
button press that they were ready to continue. Otherwise, each of the 90
trials in each run had a full sequence of 3 displays. At the end of each run,
feedback informed participants of their accuracy through the run. To
discourage false alarms and equalize the number of non-response trials
across conditions, trials that contained a false alarm were repeated at the
end of the run. The task was repeated over 5 runs (2 participants only
completed 4 runs due to time constraints).

2.3. Data acquisition

2.3.1. Electroencephalography (EEG)
EEG data were collected from 70 Ag/AgCl electrodes mounted on an

electrode cap (Easycap, Falk Minow Services, Herrsching-Breitbrunn,
Germany) distributed according to the extended 10/20 system. Elec-
trode impedances were kept below 5 kΩ. An electrode placed on the nose
served as online reference while the ground electrode was placed on the
right cheek. Vertical and horizontal eye movements were monitored
using the electrooculograms (EOG) recorded using bipolar electrodes
placed above and below the left eye and at the outer canthi of the eyes,
respectively. Electrocardiography (ECG) was recorded using bipolar
electrodes placed below the right collarbone and below the left ribcage.
EEG data were sampled at 1000Hz with a band-pass filter of 0.1–333 Hz.
EEG and MEG data were acquired simultaneously.

2.3.2. Magnetoencephalography (MEG)
MEG data were acquired using a 306 channel (204 planar gradiom-

eters and 102 magnetometers) Neuromag Vectorview system (Elekta AB,
Stockholm) in a sound-attenuated and magnetically shielded room. Data
were sampled at 1000Hz with an online band-pass filter of 0.03–333 Hz.
Five Head Position Indicator (HPI) coils were attached firmly to the EEG
cap to track the head movements of the participant. The locations of the
HPI coils as well as the EEG electrodes were recorded with a Polhemus 3D
digitizer. We also measured three anatomical landmark points (nasion,
left and right preauricular points) and additional points on the head to
indicate head shape and enable matching to each individual's structural
MRI scan.

2.3.3. Structural MRIs
High-resolution anatomical T1-weighted images were acquired for

each participant (either after the MEG session or at least three days prior
to the MEG session) in a 3T Siemens Tim Trio scanner, using a 3D
MPRAGE sequence (192 axial slices, TR¼ 2250ms, TI¼ 900ms,
TE¼ 2.99ms, flip angle¼ 9�, field of view¼ 256mm� 240mm�
160mm, 1mm isotropic resolution). The coordinates of the nasion, left
and right preauricular points in native space were hand-marked by the
experimenter, and used in the coregistration of the EEG/MEG and MRI.

2.4. EEG and MEG data preprocessing

The raw data were visually inspected during recording for any bad
channels, which were removed (EEG: 0–5 across subjects; MEG: 1–5
across subjects). The MEG data were de-noised using Maxfilter 2.2
(Elekta Neuromag, Helsinki), with the spherical harmonic model
centered on a sphere fit to the digitized head points; default settings were



Table 1
Mean number of epochs (and standard deviation across participants) per con-
dition after artifact rejection.

Localizer Tasks

Auditory localizer
Low tone High tone
80.8 (16.8) 81.0 (14.9)
Visual localizer
Face House Violin
72.1 (13.6) 70.1 (14.9) 69.7 (15.4)

Attention Task

Preparatory phase
Low tone High tone
147.6 (35.7) 147.4 (37.5)
Stimulus processing phase
Face House Violin 3-item
138.4 (36.4) 134.2 (34.2) 139.5 (34.3) 406.1 (110.2)
Target (T) Inconsistent

Non-target (Ni)
Consistent
Non-target (Nc)

138.9 (35.3) 137.9 (35.0) 135.1 (34.8)
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used for the number of basis functions and the spatiotemporal extension
(Taulu and Simola, 2006). Maxfilter detected additional bad channels
using the first and last 900 data samples (default threshold), and signal
from all bad channels was removed and interpolated. Continuous
movement compensation was applied at the same time.

Subsequent preprocessing used SPM12 (http://www.fil.ion.ucl.ac.
uk/spm) and Matlab 2015a (The Mathworks Inc). Separately for EEG
electrodes, magnetometers and gradiometers, independent component
analysis (ICA), implemented using EEGLAB (Delorme andMakeig, 2004),
was used to detect and remove components whose time-course correlated
with EOG or ECG reference time-courses, and whose topography
matched reference topographies associated with ocular or cardiac arte-
facts estimated from independent data acquired on the same system. ICA
used the default infomax algorithm, with dimension reduction to 60
principal components. An independent component was removed if (1) it
had the maximum absolute correlation with both a temporal and spatial
reference, (2) these correlations were significant at p< 0.05, (3) the
z-scored absolute correlations exceeded 2 for the spatial component, and
3 for the temporal component, and (4) it explained> 1.7% of total
variance. For assessing temporal correlations only, ICA and reference
time-courses were band-pass filtered between 0.1 and 25 Hz, and corre-
lations were also repeated 1000 times with phase randomization of the
reference time-course to ensure that the true maximum absolute corre-
lation of eliminated components was greater than the 95th percentile of
the null distribution. EEG data were then re-referenced to the average
reference.

Data were band-pass filtered between 0.1 Hz and 40Hz (zero-phase
forward and reverse 5th order Butterworth filters with half-power cutoff
frequencies). We note that although filtering enhances the signal-to-noise
ratio of neural signals, it also spreads signal in time, distorting estimates
of onset latencies. In this paper we focus on peak latencies, which are less
sensitive to filtering (Luck, 2014; Grootswagers et al., 2017; van Driel
et al., 2019). Data were epoched around the events of interest,
time-locked to stimulus onset (from �100ms to 1000ms in the auditory
localizer task; from �100ms to 1500ms in the visual localizer task; from
�100ms to 1750ms for the cue and delay period of the main task, and
�100ms to 1500ms for each of the visual stimulus presentations in the
main task). Time points �100ms to 0ms served as baseline for baseline
correction – the mean signal across this window was subtracted from
each time point, per epoch. Epochs that contained flat segments or high
threshold artefacts (peak-to-peak amplitude greater than 4000 fT for
magnetometers, 400 fT/m for gradiometers, 120 μV for EEG, or 750 μV
for EOG) were marked as bad trials and were rejected. In both localizer
and attention tasks, any epoch that contained an auditory frequency
distortion, a visual brightening, or a button press were additionally
excluded from analyses. In the attention task, we also removed all data
from any trial with an error (false alarm or miss). The average number of
epochs remaining for each condition is shown in Table 1.

2.5. Source localization

For each participant, a cortical mesh was created from the individual's
structural MRI, with a mesh resolution of ~4000 vertices per hemi-
sphere. The EEG/MEG and MRI were coregistered based on the three
anatomical fiducial points and an additional ~200 digitized points on the
scalp. Forward models were computed for EEG data using a three-shell
boundary element model (BEM) and for MEG data using a single-shell
BEM. The forward model was inverted using minimum norm estima-
tion (MNE) to compute source estimates for each experimental condition.

Due to the limited spatial resolution limits of EEG/MEG, we chose
three a priori spatially distinct bilateral ROIs (Fig. 2C). Early visual cortex
and lateral prefrontal cortex (LPFC) were used to test representation in
relevant sensory and cognitive control areas. An additional auditory
cortex ROI was used both to measure cue decoding, and in other analyses
to test for signal leakage. Auditory and primary visual cortex ROIs were
taken from the SPM Anatomy toolbox (Eickhoff et al., 2005), containing
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350 and 523 vertices. The LPFC ROI was taken from Fedorenko et al.
(2013) (http://imaging.mrc-cbu.cam.ac.uk/imaging/MDsystem),
combining the anterior, middle, and posterior middle frontal gyri,
spanning 461 vertices.

We chose V1 as the visual ROI to keep the three regions as far apart as
possible and thus minimize signal leakage between them. Since higher
visual regions are specialized for object-level processing, and can contain
template-like signals (Stokes et al., 2009), we subsequently examined a
broad extrastriate visual cortex (ESV) ROI from the Fedorenko et al.
(2013) template, which encompasses object, face, and scene processing
regions. In all cases, results were very similar, reflecting the low spatial
resolution of MEG. Here we report the results of V1, but the results from
ESV can be found in Supplementary Material 1.
2.6. Multivariate pattern analysis (MVPA)

Multivariate pattern analyses were performed using the Matlab
interface of LIBSVM (Chang and Lin, 2011). We used a linear support
vector machine (SVM), with default parameters. For each analysis, we
performed decoding in sensor space as well as in source space using data
from the three ROIs. For sensor space decoding, we combined data from
good EEG and MEG (gradiometers and magnetometers) channels. Each
individual time point was standardized (z-scored across channels) before
entering the classifier. For source space decoding, each participant's
cortical mesh was transformed into MNI space, and estimated source
activity at each vertex within the ROIs was extracted to serve as a feature
in the classifier.

In both sensor and source spaceMVPA analyses, we trained and tested
using spatiotemporal patterns extracted from a sliding time window of
32ms, in 4ms steps. Training and testing were performed on every
combination of time windows, resulting in a cross-temporal generaliza-
tion matrix of classification accuracies (King and Dehaene, 2014), with
the diagonal representing the performance of classifiers trained and
tested on the same time window. The classification accuracy matrix was
then slightly smoothed using a sliding 32ms square averaging window.
For analyses involving within-task decoding, the data were split into five
folds (with one fold containing every 5th trial chronologically), itera-
tively trained on individual trials from four of the folds and tested on the
remaining fold by applying the SVM to the remaining trials individually.
In cross-task decoding, a classifier was trained on all relevant epochs
from one task and tested on all relevant epochs from another task.

Classification accuracies were compared against chance (50%) with
one-tailed t-tests. Multiple comparisons were accounted for using
Threshold Free Cluster Enhancement (TFCE), with height and extent
exponents of 2 and 2/3 respectively, and Family-Wise Error controlled by
comparing the statistic at each time point to the 95th percentile of the
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Fig. 2. Response to the attentional cue. (A) Source localization of EEG/MEG response to the auditory attentional cue at representative time points relative to cue onset.
(B) Decoding time-course of auditory stimulus/attentional cue using all sensors combining EEG and MEG across the whole brain. Curves on the left show decoding
when training and testing on matched time-points. Dark colored dots beneath the decoding curves show times where decoding is significantly above chance for each
condition (p< 0.05), corrected for multiple comparisons along the diagonal of the cross-temporal generalization matrix; faint colored dots represent additional time-
points where the diagonal of the cross-temporal generalization matrix is significant when corrected for multiple comparisons across the whole matrix. Translucent
bands represent standard error of the mean. Matrices on the right show temporal generalization of decoding across all pairs of training and testing times. Black
contours indicate regions of significant decoding (p< 0.05). (C) Vertices within source space ROIs (auditory cortex, lateral prefrontal cortex (LPFC), and visual cortex).
(D) Decoding time-courses from these source space ROIs; same format as (B). Significance is corrected for multiple comparisons across time using TFCE and per-
mutation testing.

T. Wen et al. NeuroImage 199 (2019) 396–407
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maximal statistic across a null distribution of 1000 permutations with
random sign flipping (Smith and Nichols, 2009). TFCE was performed in
the same way across the time� time decoding matrices and along the
matched-time diagonals. The figures were plotted according to the last
time bin in the sliding window (Grootswagers et al., 2017). For decoding
of 1-item behavioral category, epochs that were preceded by a T or Ni
were excluded, to ensure that behavioral category was balanced in the
baseline period.

2.7. Data and code availability statement

The data and code are available upon direct request of the corre-
sponding author.

3. Results

3.1. Behavioral results

Behavioral performance was consistently high (auditory localizer task
– hits: mean¼ 99.0%; false alarms: mean¼ 0.8%; visual localizer task –

hits: mean¼ 98.9%; false alarms: 1.0%; attention task – hits:
mean¼ 98.3%; false alarms: mean¼ 0.8%).

3.2. Coding of the attentional cue/attentional template during the
preparatory phase

Source localization of the response to the cue at representative time
points is shown in Fig. 2A. We first looked for decoding of the specific
attentional cue during the preparatory phase of the attention task,
defined as starting from cue onset but before the first visual stimulus, and
compared this with decoding in the auditory localizer task. We asked
whether preparing for a target enhances cue decoding. Here, we sub-
sampled the trials in the attention task to match the minimum number of
trials in the auditory localizer for each participant, keeping the first n
trials, to ensure comparable signal-to-noise ratio across the three
decoding analyses. Cue/stimulus decoding as a function of time from
auditory stimulus onset is shown in Fig. 2B, D. Curves on the left show
training and testing on matched time-points. Matrices on the right show
generalization of patterns across all pairs of training and testing time
windows.

Across the whole sensor space (Fig. 2B), significant discrimination
between the two auditory stimuli/cues emerged shortly after the pre-
sentation of the stimulus, peaking at around 116ms for the auditory
localizer task (Fig. 2B, orange curve), 148ms for the preparatory phase of
the attention task (Fig. 2B, purple curve), and 112ms when training the
classifier on the localizer task and testing on the attention task (Fig. 2B,
pink curve). In both sensor space (Fig. 2B) and all ROIs (Fig. 2C and D),
cue decoding during the attention task returned to chance level. During
the auditory localizer task, cue decoding was more sustained, especially
in the LPFC. After matching the number of trials used to train the clas-
sifier, an analysis type� ROI ANOVA of peak decoding accuracies, within
a 0–600ms time window, showed a main effect of ROI (F(2,34)¼ 10.6,
p< 0.01), but no differences in analysis type (F(2,34)¼ 0.5, p¼ 0.6), and
no interactions (F(4,68)¼ 0.4, p¼ 0.7). Therefore, we found no evidence
for template representation beyond the initial auditory representation of
the cue.

To test whether activity during any stage of the preparatory phase
might reflect the representation of the upcoming trial target, we per-
formed a cross-task and cross-time classification analysis trained using
the visual localizer task. At every time window, patterns from the two
visual items associated with each cue were taken from the visual localizer
task to use as training data, and these were tested at every time window
of the preparatory phase of the attention task to decode the trial target
(now without subsampling trials). We did not find any significant time
points where the visual template cross-generalized to the preparatory
phase.
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Finally, we note that cross-time generalization matrices suggest that
the LPFC signal reached a steady state at the end of the auditory localizer,
in contrast to its lack of any sustained signal during the preparatory phase
of the attention task. Even including all the trials of the attention task,
without subsampling, we observed the same disappearance of cue
decoding during the preparatory phase (see Supplementary Material 2).
This might reflect that the fact that the representation in the auditory task
does not need to be transformed further, whereas in the attention task it
serves an intermediate role in mapping subsequent visual inputs to
behavior.

3.3. Coding of visual and behavioral properties of 1-item displays

We next turned to processing of the visual items, and selection of the
target item. Source localization of the response to the visual stimuli at
representative time points is shown in Fig. 3A.

During 1-item displays, we expected strong, early discrimination of
object identity (e.g., face vs. house, when the consistent non-target was
the violin). In the attention task, each stimulus additionally had a
behavioral category depending on the cue of that trial. For the participant
to make the appropriate response to each stimulus, we expected that the
neural signal would also show behavioral category discrimination (target
vs. non-target), which would occur after object identity processing. For
these analyses, we focused on the T and Ni conditions, for which object
identity and behavioral category were fully crossed. Object representa-
tion was measured by the discrimination between stimulus identities
(e.g. face vs. house) when each were equally often targets or non-targets;
conversely, behavioral category representation was measured by
discrimination between targets and non-targets when these were equally
balanced across stimulus identities.

Single stimulus decoding time-courses on T and Ni presentations are
shown in Fig. 3B and C. In line with expectations, both object identity and
behavioral category showed substantial periods of significant decoding
accuracy. Across the whole sensor space, a significant difference between
object identities peaked at around 128ms. Behavioral category decoding
emerged later, slowly rising to a peak at 360ms.

Source space analysis showed that both types of information could be
decoded from all three ROIs. Decoding of object identity in the auditory
ROI warns of possible signal leakage between regions. Visual cortex,
however, had the highest decoding accuracy for object identity, while
ROIs did not statistically differ in their strength of decoding accuracy for
behavioral category.

Cross-temporal generalization indicated that object identity repre-
sentation was most stable in the visual ROI. In contrast, behavioral
category representation was most stable in the LPFC ROI.

3.4. Coding of target location in 3-item displays

Next, we examined target representation in the presence of simulta-
neous distractors. We first asked when the spatial location of the target
within 3-item displays could be decoded (Fig. 4; see also Fahrenfort et al.,
2017). To do this, we decoded every pair of T versus Ni locations, while
holding Nc position constant (i.e., “T right, Ni left” vs. “Ni right, T left”,
“T right, Ni bottom” vs. “Ni right, T bottom”, and “T left, Ni bottom” vs.
“Ni left, T bottom”) and averaged the accuracies within each participant.
Within each pair, collapsing across both possible cues ensured that the
decoding was balanced for both visual features and auditory cues. Group
sensor-space results showed that decoding began to emerge shortly after
stimulus onset, and peaked at 244ms, before slowly declining toward the
end of the epoch. The analysis was repeated in source space. Decoding of
target location was significant in all ROIs, but strongest in visual cortex
where it peaked at 132ms. Cross-temporal generalization suggested that
the representation of target location was initially dynamic, then entered a
temporarily stable state, most apparent in sensor space suggesting
spatially coarse stability, before becoming unstable once more prior to
the end of the epoch.



source localiza�on of visual processing

Fig. 3. Coding of visual and behavioral properties of 1-item displays (A) Source localization of EEG/MEG response to visual presentation (including both single-item
and multi-item displays) at representative time-points. (B) Decoding time-courses of object identity, in (a) sensor and (b) source space, when training/testing using
matched time-points, and (c) generalizing across training/testing times. Dark colored dots beneath the decoding curves show times where decoding is significantly
above chance for each condition (p< 0.05), corrected for multiple comparisons along the diagonal of the cross-temporal generalization matrix; faint colored dots
represent additional time-points where the diagonal of the cross-temporal generalization matrix is significant when corrected for multiple comparisons across the
whole matrix. Translucent bands represent standard error of the mean. Black contours in cross-time matrices indicate regions of significant decoding (p< 0.05).
Significance is corrected for multiple comparisons across time using TFCE and permutation testing. (C) Decoding time-courses and cross-temporal generalization for
behavioral category information. Object identity decoding emerged earlier than behavioral category decoding. Visual cortex showed the highest object decoding
accuracy, while ROIs were comparable in their strength of behavioral category representation.
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In a complementary analysis to target location decoding, we exam-
ined the N2pc, a well-known early index of spatial attention, which ap-
pears as a negativity over posterior EEG electrodes contralateral to the
side of space to which the subject is attending around 200–300ms
following a stimulus (Luck and Hillyard, 1994; Heinze et al., 1990;
Eimer, 1996; Hopf et al., 2000; Fahrenfort et al., 2017). We compared
event-related potentials/fields when the target was on the right or left of
the screen of the 3-item display, and the topography of this contrast is
shown in Fig. 4B. Differences between target locations peaked between
200 and 300ms in posterior EEG and MEG signals, although the signals
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diverged earlier in MEG, which could reflect the source of the earlier
decoding. We note that our lateralized stimuli were in the upper visual
field, and that the N2pc is typically stronger for stimuli in the lower visual
field (Luck et al., 1997; Bacigalupo and Luck, 2018).
3.5. Coding of target identity during presentation of 3-item displays

We also hypothesized that representation of 3-item displays would
differ depending on the cue, even though the visual input was the same.
All 3-item displays contained the target item that was associated with the



Fig. 4. Coding of target location in 3-item displays. (A) Decoding of target location during presentation of 3-item displays, i.e., whether the item corresponding to the
cue is in the left, right, or bottom position. Format as in Fig. 3. Location decoding was strongest in the visual cortex. (B) Univariate N2pc ERP/ERFs across (a) EEG
electrodes and (b) latitudinal gradiometers. Latitudinal gradiometers are presented because their orientation around the helmet means that contralateral asymmetries
in the magnetic flux gradient are expressed analogously to the EEG topography (Mitchell and Cusack, 2011; Kuo et al., 2016). Topographies are averaged across
200–260ms (marked in grey on the time-courses). Time-courses are averaged across posterior sensors contralateral and ipsilateral to the target (highlighted on the
topographies), with black dots indicating a significant difference (p< 0.05) after TFCE with permutation testing.
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cue, as well as the Ni and Nc items. Therefore, the decoding of the cue in
the presence of a matching visual stimulus likely reflects attentional
enhancement of the selected target identity. Although a template rep-
resentation could also contribute to the decoding, this can only be iso-
lated in the absence of a target (see next section). In sensor space, cue/
target identity decoding peaked at 252ms. In source space, the visual
cortex showed the highest decoding accuracy (Fig. 5).

Cross-temporal generalization suggested that the representation of
target identity in the presence of distractors was dynamic, and decayed
rather than settling into a steady state. For this analysis, we also expected
cross-task generalization from the visual localizer. This was significant in
Fig. 5. Decoding of attentional cue/target identity during presentation of 3-item di
generalization of decoding, when training on the visual localizer task and testing on
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the visual ROI, but not in the auditory or LPFC ROIs, suggesting that the
shared pattern was predominantly sensory, with minimal signal leakage
in this case.

To compare the decoding latencies of target location and target
identity in 3-item displays, we calculated 50%-area latency (Luck, 2014;
Liesefeld, 2018) using data from a 0–600ms window for each subject,
ROI and decoding type. Paired 2-tailed t-tests showed that target location
decoding preceded target identity decoding in both the whole sensor
space (t(17)¼ 2.86, p< 0.05) and in the visual cortex (t(17)¼ 4.97,
p< 0.001), but not in the auditory or LPFC ROIs (both t(17)< 1.95; both
p> 0.05).
splays. Panels (a–c) have the same format as Fig. 3. Panel (d) shows cross-task
the attention task.
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3.6. Reawakening of the attentional cue/template during presentation of
consistent non-targets

Finally, we tested whether we could decode the cue/template during
the presentation of a single Nc visual stimulus. Wolff et al. (2015, 2017)
have shown that by ‘pinging’ the brain with a neutral stimulus during
working memory maintenance, it can be possible to decode the
memory-item-specific information from the impulse response. In our
data, cue decoding following Nc presentation was visible but rather weak
and intermittent (Fig. 6). Across sensor space and source space, there
were scattered brief periods of above-chance decoding. Their appearance
in auditory as well as visual and frontal ROIs questions whether these
might reflect a reactivated memory of the auditory cue, or a visual
attentional template in anticipation of the next visual input. Apparent
signal in the auditory ROI might also reflect leakage from other sources.
Cross-temporal generalization suggested that although the representa-
tion was not fully sustained, when it resurfaced in the visual ROI it did so
with a similar pattern. Cross-task generalization from the auditory and
visual localizers provided no evidence that this representation was in a
similar format to either cue or target perception.
3.7. Summary of component time-courses during attentional selection

Above we have described five distinct forms of information repre-
sentation evoked by the appearance of the visual stimuli (Figs. 3–6).
These are summarized in Fig. 7, overlaying their average sensor-space
and ROI-based decoding time-courses for ease of comparison.

4. Discussion

There is currently much interest in decoding the contents of cognitive
operations from human MEG/EEG data, and in using these methods to
understand attentional selection of information relevant to current goals.
Here, we examined the evolution of multiple forms of information rep-
resented in the brain as a visual target is selected. Combining single-item
displays with multi-item displays of targets and different types of dis-
tractors allowed quantification of distinct components of processing
during selective attention, indexed by different profiles of representa-
tional content.

Although multiple attentional templates could guide behavior (Awh
et al., 2012), for effective task performance selection of a particular
target requires a template that specifies the currently relevant object
(Duncan and Humphreys, 1989; Bundesen, 1990). In fMRI, multivariate
classifiers trained on responses to viewed stimuli can predict an atten-
tional template during the preparatory phase (e.g., Stokes et al., 2009). In
our MEG/EEG data, we observed significant decoding of cue identity in
the attention task, but after equating trial numbers decoding accuracies
Fig. 6. Decoding time-course of attentional cue during
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were not significantly different from that of stimulus processing in the
auditory localizer task. Furthermore, beyond 1000ms, cue decoding was
indistinguishable from chance. Previous MEG/EEG studies have sug-
gested existence of a pre-stimulus template, often subtle and short-lived
(Myers et al., 2015; Kok et al., 2017; Grubert and Eimer, 2018).
Following non-target displays, we observed evidence of template
reawakening; although significant, this was weak and not fully sustained.
The delay of template reactivation relative to the explicit categorization
of the display as a non-target suggests a serial component to the search
process, here within the temporal presentation stream but consistent
with neural evidence of serial refocusing of attention within single search
displays (Woodman and Luck, 1999; Bichot et al., 2005).

Sustained preparatory activity reflecting an attentional template may
be largely invisible to MEG/EEG for many reasons. For example, at the
physiological level, if discriminating neurons are intermixed, they may
be hard to distinguish with non-invasive methods. Recent findings from
single trial analysis of direct neural recordings also suggest that spiking
activity during the delay period is sparse, with brief bursts of activity
having variable onset latency and duration, which would hinder cross-
trial decoding (Shafi et al., 2007; Lundqvist et al., 2016, 2018; Stokes
and Spaak, 2016; Miller et al., 2018). A parallel possibility is that
attentional templates may sometimes be stored in an “activity silent”
passive form, such as changed synaptic weights (Lundqvist et al., 2010;
Stokes, 2015). Consistent template representations may also be difficult
to detect if there is trial-to-trial variability at the cognitive level (Vidaurre
et al., 2019), such as fidelity of mental imagery, as well as the anticipa-
tion of stimulus timing, with templates activated/strengthened only
when the search display is expected to be imminent (Grubert and Eimer,
2018). It is also possible that in the current experiment, the attentional
template required little effort to maintain as a verbal label and might
have been more visible if harder to verbalize. Consistent templates may
be more likely when few features distinguish targets from distractors, for
example when targets are defined only by orientation or color (Kok et al.,
2017; Myers et al., 2015; Grubert and Eimer, 2018). Perceptually com-
plete templates may be more likely when targets share different features
with different distractors (Duncan and Humphreys, 1989). Finally, we
emphasize that for successful task performance a template must exist in
some form, even when we are unable to detect it, and that uncovering
subtle or variable templates may benefit from novel analysis methods
(Vidaurre et al., 2019).

Upon presentation of the visual choice display, we found much
decodable information of various kinds. The timing of peak decoding of
different features suggests five components of processing. The current
data cannot determine the extent to which these components evolve in
parallel or have some serial dependency, whereby one process influences
another. It is likely that there is a degree of both (Bichot et al., 2005).
First, visual stimulus properties are encoded, shown by object identity
presentation of Nc displays. Format as in Fig. 3.



Fig. 7. Summary of the decoding time-courses of five component processes of selective attention following onset of a visual stimulus: representation of stimulus
identity, target position, target identity, behavioral status, and the template of the cue/target. Decoding accuracy is averaged across sensor space and source ROIs, and
translucent bands represent standard error of the mean across subjects.

T. Wen et al. NeuroImage 199 (2019) 396–407
decoding in 1-item displays, peaking around 132ms, and strongest in
visual cortex. Second, in a multi-element display, the candidate target is
localized, shown by target location decoding that peaked between
136ms (in visual cortex, where strongest) and 288ms (combining all
sensors). This may be partially concurrent with initial visual processing,
consistent with an initial parallel stage of selection (Duncan, 1980;
Treisman and Gelade, 1980) and automatic registration of coarse feature
location (e.g. Cohen & Ivry, 1989; Hopf et al., 2004), that could be used
to guide subsequent attention (Itti and Koch, 2000; Bisley and Goldberg,
2010; Wolfe, 1994; Eimer, 2015). Third, representation of the candidate
target continues to be enhanced relative to distractors, perhaps via in-
tegrated competition, shown by cue/target identity decoding in 3-item
displays, peaking around 252ms, again strongest in visual cortex.
Fourth, behavioral significance of the target is explicitly represented (in
this case whether it is a target, so requiring further processing), shown by
behavioral category decoding in 1-item displays, peaking around 344ms
and most stable in the LPFC. Fifth, if no target is identified and search
must continue, an attentional template might be reactivated or
strengthened, shown by cue decoding after Nc displays, peaking beyond
500ms. The precise timing at which each representation is detectable
will depend on many factors including stimuli, task, analysis sensitivity,
similarity between targets and distractors, and the number and homo-
geneity of distractors (Duncan and Humphreys, 1989). Nonetheless, we
anticipate that the sequence of key components would largely generalize
across paradigms (Eimer, 2015; Vidaurre et al., 2019). Potential de-
pendencies between processes might be investigated by combining
MVPA of electrophysiological recordings with transcranial magnetic
stimulation at successive times.

In 1-item displays, we found a distinction between visual cortex and
LPFC. While the regions represented behavioral category with similar
strength, visual cortex represented stimulus identity more strongly than
LPFC. Similarly, object identity was represented more stably in visual
cortex, whereas behavioral category was represented more stably in
LPFC. fMRI studies show that frontal regions flexibly code for behav-
iorally relevant categories according to task rule (Jiang et al., 2007; Li
et al., 2007; Woolgar et al., 2011; Lee et al., 2013; Erez and Duncan,
2015). Electrophysiological recordings of monkey prefrontal responses to
T, Ni, and Nc stimuli show that visual input properties are initially
equally represented for targets and non-targets, whereas the behaviorally
critical target dominates later processing (Kadohisa et al., 2013; Stokes
et al., 2013). Our results also suggest an anterior-posterior distinction in
information content and timing.
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In multi-item displays, the candidate target was rapidly identified and
localized, with location decoding providing the earliest evidence of
modulation by behavioral relevance. Although it's timing, peaking
around 132ms in V1, was earlier than might be expected based on the
N2pc and multivariate decoding using EEG alone (Fahrenfort et al.,
2017), it is consistent with representation of the location of task-relevant
features reported from ~140ms and preceding the N2pc (Hopf et al.,
2004). Ipsilateral and contralateral target responses diverged earlier in
MEG than EEG, suggesting that the source of the earlier decoding may be
more visible to MEG. Location decoding peaked later in the other ROIs
and at the sensor level (beyond 230ms) suggesting that source locali-
zation may have helped in isolating the earlier signal.

Although target localization implies target identification, and time-
courses of location and identity representation in 3-item displays were
heavily overlapping, the location signal was significantly earlier than the
identity representation in visual cortex. This is consistent with models of
visual attention as well as empirical data that make an explicit distinction
between feature selection, where attention is rapidly allocated to
candidate objects (Broadbent, 1958), and object recognition, which takes
place at a subsequent stage where the features of objects are integrated
and their identity becomes accessible (Eimer, 2015; Eimer and Grubert,
2014; Kiss et al., 2013). It could also arise within a continuous compet-
itive framework, without explicit recognition, if neurons representing
identity have overlapping receptive fields such that competition amongst
them is slower to resolve or benefits from prior spatial filtering (Luck
et al., 1997); or if complete identity representation involves several
features whose integration is strongly mediated by shared location
within spatiotopic maps (Treisman and Zhang, 2006; Schneegans and
Bays, 2017). The location of an attended feature can also be represented
before the location of a target itself (Hopf et al., 2004), and the temporal
priority with which different features of the target are enhanced may
depend on the cortical location as well as the particular task demands
(Hopf et al., 2005). The observations that competitive representations of
target location and target identity peaked at different times, and that
neither appeared to reach a permanent steady state, together indicate
that the early phase of integrated competition is dynamic, with different
aspects of the target representation waxing andwaning at different times.
In contrast, the later explicit representation of target status settled into a
steady state in LPFC that persisted until the end of the epoch.

Interestingly, a target influenced bias in the 3-item displays well
before its target status was explicitly decodable in the single-item dis-
plays. This strongly suggests at least two stages of target processing,
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consistent with behavioral manipulations suggesting that spatial selec-
tion and target identification are separable (Ghorashi et al., 2010).
Distinction between an early, parallel processing stage and a later
capacity-limited stage is central to most models of attention (Duncan,
1980; Treisman and Gelade, 1980). Target decoding in 3-item displays
peaked at 252ms with first significance at 196ms, similar to attentional
modulation of stimulus category processing in cluttered scenes observed
from 180ms (Kaiser et al., 2016), and to demonstration of
feature-binding during integrated competition (Schoenfeld et al., 2003).
The later stage indexed by single-item decoding may correspond to
capacity-limited individuation of the integrated target object, allowing
its bound properties to become accessible for further processing and
goal-directed action (Duncan, 1980; Bichot et al., 2005; Mitchell and
Cusack, 2008; Christie et al., 2015), in this case likely including the
brightness judgement. These two stages could also be interpreted in
terms of the “global neuronal workspace” model - the earlier attentional
bias reflecting accumulation of pre-conscious sensory evidence; the later
explicit representation of target status reflecting conscious awareness
and “ignition” of fronto-parietal networks, linked to P3 waves around
300–500ms (Dehaene and Changeux, 2011; Sergent et al., 2005) and
consistent with the timing of peak decoding at 360ms.

To conclude, although attentional selection must begin with a tem-
plate, this may be weakly or variably represented (Duncan et al., 1997;
Lundqvist et al., 2018; Miller et al., 2018), such that it is largely invisible
to MEG/EEG, or even maintained in “silent” form (Stokes, 2015). In
agreement with others (Olivers et al., 2011; Myers et al., 2015; Grubert
and Eimer, 2018), we suggest that the template may be actively and
consistently represented only when needed, and least likely to interfere
with other concurrent processes. Integrated competition accounts of
attention imply that the template need be neither complete nor constant
across trials, consistent with no significant response pattern generaliza-
tion between template representations and the visual localizer. In
contrast, integrated competition suggests that attentional selection and
enhancement of stimulus representations will be strong and widespread.
Supporting such models, we observed robust, time-resolved decoding of
the critical processing stages required to select and enhance a target
amongst competing distractors, and to categorize it according to
behavioral requirements.
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